211

Towards Engineering Smart Transcription Factors for Enhanced Abiotic Stress

Alzahrani, F. O., (2021). Metabolic engineering of osmoprotectants to elucidate the

mechanism(s) of salt stress tolerance in crop plants. Planta, 253, 24.

Aroca, R., Porcel, R., & Ruiz-Lozano, J. M., (2012). Regulation of root water uptake under

abiotic stress conditions. J. Exp. Bot., 63, 43–57.

Asgari, L. H., Savaghebi, G., Hadian, J., Hatami, M., & Pezhmanmehr, M., (2017).

Comparison of copper and zinc effects on growth, micro-and macronutrients status and

essential oil constituents in pennyroyal (Mentha pulegium L.). Braz. J. Bot., 40, 379–388.

Ashraf, M., & Foolad, M. R., (2007). Roles of glycinebetaine and proline in improving plant

abiotic stress resistance. Environ. Exp. Bot., 59, 206–216.

Atkinson, N. J., & Urwin, P. E., (2012). The interaction of plant biotic and abiotic stresses:

From genes to the field. J. Exp. Bot., 63, 3523–3543.

Babitha, K. C., Ramu, S. V., Nataraja, K. N., Sheshshayee, M. S., & Udayakumar, M., (2015).

EcbZIP60, a basic leucine zipper transcription factor from Eleusine coracana L. improves

abiotic stress tolerance in tobacco by activating unfolded protein response pathway. Mol.

Breed., 35, 181.

Badu-Apraku, B., & Yallou, C. G., (2009). Registration of striga resistant and drought tolerant

tropical early maize populations TZE-W Pop DT STR C4 and TZE-Y Pop DT STR C4. J.

Plant Regist., 3, 86–90.

Baillo, E. H., Kimotho, R. N., Zhang, Z., & Xu, P., (2019). Transcription factors associated

with abiotic and biotic stress tolerance and their potential for crop improvement. Genes,

10, 771.

Baldoni, E., Genga, A., & Cominelli, E., (2015). Plant MYB transcription factors: Their role

in drought response mechanisms. Int. J. Mol. Sci., 16, 15811–15851.

Bartels, D., & Hussain, S. S., (2008). Current status and implications of engineering drought

tolerance in plants using transgenic approaches. CAB Rev. Persp. Agr. Vet. Sci. Nutri Natu.

Sci., 3, 20.

Bartels, D., & Sunkar, R., (2005). Drought and salt tolerance in plants. CRC Crit. Rev. Plant

Sci., 24, 23–58.

Bauer, H., Ache, P., Lautner, S., Fromm, J., Hartung, W., Al-Rasheid, K. A., Sonnewald,

S., et al., (2013). The stomatal response to reduced relative humidity requires guard cell-

autonomous ABA synthesis. Curr. Biol., 23, 53–57.

Baxter, A., Mittler, R., & Suzuki, N., (2014). ROS as key players in plant stress signaling. J.

Exp. Bot., 65, 1229–1240.

Beerli, R. R., & Barbas, C. F. III., (2002). Engineering polydactyl zinc finger transcription

factors. Nat. Biotechnol., 20, 135.

Behelgardy, M. F., Motamed, N., & Jazii, F. R., (2012). Expression of the P5CS gene in

transgenic versus non-transgenic olive (Olea europaea) under salinity stress. World Appl.

Sci. J., 18, 580–583.

Behnam, B., Kikuchi, A., Celebi-Toprak, F., Yamanaka, S., Kasuga, M., Yamaguchi-

Shinozaki, K., & Watanabe, K. N., (2006). The Arabidopsis DREB1A gene driven by the

stress-inducible rd29A promoter increases salt-stress tolerance in proportion to its copy

number in tetrasomic tetraploid potato (Solanum tuberosum). Plant Biotech., 23, 169–177.

Bhargava, S., & Sawant, K., (2013). Drought stress adaptation: Metabolic adjustment and

regulation of gene expression. Plant Breed., 132, 21–32.

Bhatnagar-Mathur, P., Devi, M. J., Reddy, D. S., Vadez, V., YamaguchiShinozaki, K., &

Sharma, K. K., (2006). Overexpression of Arabidopsis thaliana DREB1A in transgenic

peanut (Arachis hypogaea L.) for improving tolerance to drought stress (poster presentation).