211
Towards Engineering Smart Transcription Factors for Enhanced Abiotic Stress
Alzahrani, F. O., (2021). Metabolic engineering of osmoprotectants to elucidate the
mechanism(s) of salt stress tolerance in crop plants. Planta, 253, 24.
Aroca, R., Porcel, R., & Ruiz-Lozano, J. M., (2012). Regulation of root water uptake under
abiotic stress conditions. J. Exp. Bot., 63, 43–57.
Asgari, L. H., Savaghebi, G., Hadian, J., Hatami, M., & Pezhmanmehr, M., (2017).
Comparison of copper and zinc effects on growth, micro-and macronutrients status and
essential oil constituents in pennyroyal (Mentha pulegium L.). Braz. J. Bot., 40, 379–388.
Ashraf, M., & Foolad, M. R., (2007). Roles of glycinebetaine and proline in improving plant
abiotic stress resistance. Environ. Exp. Bot., 59, 206–216.
Atkinson, N. J., & Urwin, P. E., (2012). The interaction of plant biotic and abiotic stresses:
From genes to the field. J. Exp. Bot., 63, 3523–3543.
Babitha, K. C., Ramu, S. V., Nataraja, K. N., Sheshshayee, M. S., & Udayakumar, M., (2015).
EcbZIP60, a basic leucine zipper transcription factor from Eleusine coracana L. improves
abiotic stress tolerance in tobacco by activating unfolded protein response pathway. Mol.
Breed., 35, 181.
Badu-Apraku, B., & Yallou, C. G., (2009). Registration of striga resistant and drought tolerant
tropical early maize populations TZE-W Pop DT STR C4 and TZE-Y Pop DT STR C4. J.
Plant Regist., 3, 86–90.
Baillo, E. H., Kimotho, R. N., Zhang, Z., & Xu, P., (2019). Transcription factors associated
with abiotic and biotic stress tolerance and their potential for crop improvement. Genes,
10, 771.
Baldoni, E., Genga, A., & Cominelli, E., (2015). Plant MYB transcription factors: Their role
in drought response mechanisms. Int. J. Mol. Sci., 16, 15811–15851.
Bartels, D., & Hussain, S. S., (2008). Current status and implications of engineering drought
tolerance in plants using transgenic approaches. CAB Rev. Persp. Agr. Vet. Sci. Nutri Natu.
Sci., 3, 20.
Bartels, D., & Sunkar, R., (2005). Drought and salt tolerance in plants. CRC Crit. Rev. Plant
Sci., 24, 23–58.
Bauer, H., Ache, P., Lautner, S., Fromm, J., Hartung, W., Al-Rasheid, K. A., Sonnewald,
S., et al., (2013). The stomatal response to reduced relative humidity requires guard cell-
autonomous ABA synthesis. Curr. Biol., 23, 53–57.
Baxter, A., Mittler, R., & Suzuki, N., (2014). ROS as key players in plant stress signaling. J.
Exp. Bot., 65, 1229–1240.
Beerli, R. R., & Barbas, C. F. III., (2002). Engineering polydactyl zinc finger transcription
factors. Nat. Biotechnol., 20, 135.
Behelgardy, M. F., Motamed, N., & Jazii, F. R., (2012). Expression of the P5CS gene in
transgenic versus non-transgenic olive (Olea europaea) under salinity stress. World Appl.
Sci. J., 18, 580–583.
Behnam, B., Kikuchi, A., Celebi-Toprak, F., Yamanaka, S., Kasuga, M., Yamaguchi-
Shinozaki, K., & Watanabe, K. N., (2006). The Arabidopsis DREB1A gene driven by the
stress-inducible rd29A promoter increases salt-stress tolerance in proportion to its copy
number in tetrasomic tetraploid potato (Solanum tuberosum). Plant Biotech., 23, 169–177.
Bhargava, S., & Sawant, K., (2013). Drought stress adaptation: Metabolic adjustment and
regulation of gene expression. Plant Breed., 132, 21–32.
Bhatnagar-Mathur, P., Devi, M. J., Reddy, D. S., Vadez, V., YamaguchiShinozaki, K., &
Sharma, K. K., (2006). Overexpression of Arabidopsis thaliana DREB1A in transgenic
peanut (Arachis hypogaea L.) for improving tolerance to drought stress (poster presentation).